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A GRAPHICAL DIAGNOSTIC FOR VARIANCE FUNCTIONS

IAIN PARDOE1∗ AND R. DENNIS COOK2

University of Oregon and University of Minnesota

Summary

This paper proposes diagnostic plots for regression variance functions. It shows how to
extend graphical methodology that uses Bayesian sampling for checking the regression mean
function to also check the variance function. Plots can be constructed quickly and easily
for any model of interest. These plots help to identify model weaknesses and can suggest
ways to make improvements. The proposed methodology is illustrated with two examples: a
simple linear regression model to fix ideas, and a more complex study involving count data
to demonstrate the potential for wide application.

Key words: Bayesian methodology; diagnostic plot; marginal model plot; model criticism;
posterior predictive distribution.

1. Introduction

Pardoe (2001) and Pardoe & Cook (2002) describe ‘Bayes marginal model plots’ for
checking regression model mean functions. Such plots enhance the ‘marginal model plots’ of
Cook & Weisberg (1997) by displaying model uncertainty. This paper shows how to extend
these ideas to situations where competing models differ mainly with respect to the regression
variance function. While the proposed graphical diagnostic maintains the intuitive motivation
of the papers just cited, the details of exactly how to extend the methodology are non-
trivial; the purpose of this paper is to elucidate these details for general regression settings.
The resulting diagnostic plots clearly display features of the fitted model that derive from
the assumed variance function, and enable a visual assessment of whether the data support
this variance function. The plots include a Bayesian band of uncertainty for the variance
function derived from the fitted model, which seems to be a unique feature among graphical
diagnostics for variance functions. Despite some work in this area (for example, Diblasi &
Bowman, 1997), there do not appear to be any competing graphical methods available with
all of the strengths of the proposed methodology. Improving specification of the variance
function can be important for correctly assessing prediction uncertainty both for standard
linear models and more complex regression models. The remainder of this section provides
sufficient details on the use of Bayes marginal model plots for assessing mean functions to
allow extensions to variance functions in Section 2. Section 3 contains an example based on
a classic chemical data set which illustrates the use of the plots in a simple linear regression
setting. A more complex application is presented in Section 4, which follows an analysis
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by Durham, Pardoe & Vega (2004) of restaurant wine demand, while Section 5 contains a
discussion.

Suppose the exploratory stage of a regression analysis of a univariate response y on a
vector of predictors x has been completed, and there is a reasonable first model to assess, Mθ (y
| x), where θ is a vector of unknown parameters. Assume that θ can be consistently estimated
under Mθ (y | x) with θ̂ , or, for a Bayesian analysis, that inference will be based on a posterior
distribution for the model, Mθ (y | x, yd ), where yd is the n-vector of observed responses.
The model should ideally provide a sufficiently accurate approximation to the unknown
conditional cumulative distribution function F(y | x), relative to whatever practical issue is
at hand. The nature of any model deficiency may indicate the need for model reformulation,
or for separate consideration of poorly fitting or influential observations. Cook & Weisberg
(1997) consider this problem from the perspective of the following:

EF(y | x) = EM̂(y | x), ∀ x ∈ X ⊂ IRp

⇐⇒ EF(y | h) = EM̂(y | h), ∀ h = h(x) : IRp → IR1, (1)

where EF is model-free expectation under F, EM̂ is model-based expectation under Mθ̂ ,X is
the sample space of x, and h is any measurable function of x.

If the dimension of x is greater than two, it is difficult to visualize E(y | x), and hence
hard to check the first equality in (1). However, if h is univariate, then E(y | h) can be
visualized in a 2-D scatterplot and the second equality in (1) can be checked using smoothed
mean function estimates. In particular, smooth y versus h to obtain ÊF(y | h), and, since
EM̂(y | h) = E(EM̂(y | x) | h), smooth the model fitted values EM̂(y | x) versus h to obtain
ÊM̂(y | h). A marginal model plot for the mean in the (marginal) direction h is a plot of y
versus h with ÊF(y | h) and ÊM̂(y | h) superimposed. If Mθ̂ is an accurate approximation to F,
then ÊF(y | h) ≈ ÊM̂(y | h) and smooths that match closely for any function h provide support
for Mθ̂ . Cook & Weisberg (1997) suggest possibilities for the checking functions h, including
fitted values, individual predictors in the model, potential predictors not in the model, linear
combinations of predictors, and random linear projections of x.

Even if Mθ (y|x) = F(y|x) for some unknown value of θ , it should not be expected
that Mθ̂ (y | x) = F(y | x) (because of sampling variability). From a Bayesian perspective,
this variability can be represented using the posterior distribution for θ . By displaying this
variability via the model smooth, it becomes easier to assess whether it seems reasonable for
the data to have been generated by the model in question. In particular, Gelman, Meng &
Stern (1996) suggest drawing a value of θ from its posterior distribution, and then generating
a y-sample from the model M indexed by this θ . Then repeat this process a large number
m of times and compare the data yd to the m realizations from M. A graphical way to do
this is to compare model-free predicted values with expected y-values based on sampled θ

values. A Bayes marginal model plot for the mean is then a scatterplot of y versus h with a
mean function estimate under F superimposed, as well as mean function estimates for each
model sample Mθ t , t = 1, . . . , m. If enough samples are taken, say m = 100, the Bayes
mean function estimates, ÊMθ t

(y | h), t = 1, . . . , m, form a mean function band under M. If,
regardless of h, the mean function estimate under F lies broadly inside the mean function
band under M and it follows the general pattern shown by the model smooths, then perhaps
Mθ̂ provides an accurate description of the conditional distribution of y | x and is a useful
model; otherwise, Mθ̂ is called into question.
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2. Bayes marginal model plots for the variance

The ideas discussed in Section 1 can be extended to compare variance functions. In partic-
ular, (1) can be recast in terms of variance functions rather than mean functions. To compare
VarF(y|h) with VarM̂(y | h), first obtain V̂arF(y | h) as follows. First calculate ÊF(y | h) by
smoothing y versus h. Then calculate squared ‘model-free residuals’, ê2

F = (y − ÊF(y | h))2.
Finally, smooth ê2

F versus h to get the estimate V̂arF(y | h). The corresponding model-based
estimate of the variance function VarM̂(y | h) uses the relationship

VarM̂(y | h) = E(VarM̂(y | x) | h) + Var(EM̂(y | x) | h). (2)

To estimate the first term on the right-hand side of (2), smooth the (assumed) variance function
from the fitted model, VarM̂(y | x), versus h to obtain Ê(VarM̂(y | x) | h). To estimate the second
term on the right-hand side of (2), first calculate ÊM̂(y | h) by smoothing EM̂(y | x) versus
h. Then calculate squared ‘model-based discrepancies’, ê2

M̂
= (EM̂(y | x) − ÊM̂(y | h))2. Then

smooth ê2
M̂

versus h to obtain V̂ar(EM̂(y | x) | h). Finally, V̂arM̂(y | h) = Ê(VarM̂(y | x) | h) +
V̂ar(EM̂(y | x) | h). Now, if Mθ̂ is an accurate approximation to F, then for any h the marginal
variance function estimates should agree, V̂arF(y | h) ≈ V̂arM̂(y | h). Any indication that the
function estimates do not agree for one particular h calls Mθ̂ into question; if they agree for
a variety of plots, there is support for Mθ̂ .

If the same method and smoothing parameter are used for the two smooths of model-
free and model-based quantities in a scatterplot, any estimation bias should approximately
cancel (see Bowman & Young, 1996), allowing their point-wise comparison. Thus each of the
smooths used to obtain V̂arF(y | h) and V̂arM̂(y | h) should have the same smoothing parameter,
γ . Therefore it is desirable to select γ so that the smooths are flexible enough to capture clear
systematic trends in all of the corresponding scatterplots, while not over-fitting too much in
any one scatterplot, over-reacting to individual points, or tracking spurious patterns. This is
clearly impractical, but a viable alternative is to graphically select γ to capture the systematic
trends in both a scatterplot of the data (y) versus h and a scatterplot of the fitted values from
the model versus h. Further discussion of this issue is in Section 5 (see also Pardoe & Cook,
2002).

Although a variance function estimate should be non-negative, it is possible for the
smooths involved to move into negative territory. One simple way to deal with this is to truncate
any negative estimates for non-negative quantities at zero. More sophisticated methods might
be preferable in certain cases, although the truncation method is fast and appears to work well
in practice. In addition, changing the smoothing parameter to make the smooths more flexible
can often get around this issue. This method for smoothing the variance function works well
if the mean function is estimated well. However, if the mean function smooth is very biased,
the resultant variance function smooth can be very poor. In such cases, Ruppert et al. (1997)
suggest a bias adjustment—this, however, can require extensive further calculation.

When trying to assess variance functions, a graphical display based on the standard
deviation scale is often more meaningful than the less-intuitive variance scale. Thus, one
way to compare the variance function estimates visually is to superimpose lines representing
ÊF(y | h) ± V̂arF(y | h)1/2 and ÊM̂(y | h) ± V̂arM̂(y | h)1/2 on a marginal model plot for the
mean. The square roots of the variance function estimates can be thought of as ‘standard
deviation function’ estimates. An alternative display for the variance function check is to
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plot the absolute values of the model-free residuals, | êF | = | y − ÊF(y | h) | , versus h, and
then superimpose the square roots of the variance function estimates, V̂arF(y | h)1/2 and
V̂arM̂(y | h)1/2. The latter approach tends to provide a clearer, more easily interpreted plot.
There is further discussion of this issue in Section 5.

To incorporate model variability in the plots, calculate model-based variance function
estimates corresponding to individual samples from the posterior distribution of θ . Such
estimates involve following the procedure based on (2), with the θ samples used to obtain
Ê(EMθ t

(y | x) | h) and Ê(VarMθ t
(y | x) | h), t = 1, . . . , m. A Bayes marginal model plot for

the variance is then a plot of the absolute values of the model-free residuals, |êF| = |y −
ÊF(y|h)|, versus h, with a standard deviation function estimate under F superimposed. Then,
superimpose a standard deviation function estimate for each model sample Mθ t , t = 1, . . . , m.
In particular, V̂arF(y | h)1/2 is compared with V̂arMθ t

(y | h)1/2, t = 1, . . . , m.

3. Chemical experiment application

Franklin et al. (1956) described a chemical experiment to develop a catalyst in the
vapour phase oxidation of naphthalene. The study authors considered how three variables,
AN = log10(air to naphthalene ratio), Ctime = log10(contact time), and Btemp = 0.01(bed
temperature−330), affect Y n = percentage mole conversion of naphthalene to naphtho-
quinone. The variable transformations result in approximate trivariate normality and appear
to stabilize the yield surface. Cook (1998) suggested that the dependence of Y n on the predic-
tors is through the single linear combination x = 0.397 AN + 0.445 Ctime + 0.802 Btemp.
Box-Cox response transformation methodology (Box & Cox, 1964) indicates that a simple
linear regression model with transformed response log(Y n) and single predictor x provides a
good fit to the data. It is straightforward to obtain posterior samples for the parameters of this
model directly using standard non-informative priors (Lindley & Smith, 1972), and there is
little evidence in the resulting Bayes marginal model plot for the mean with h = x to call this
model into question (plot not shown).

However, the constant variance function of this model appears, however, to be misspec-
ified, as is clearly evident in the Bayes marginal model plot for the variance with h = x in
Figure 1. Since there is just one predictor in this model, there is an easy way to alter the
model to attempt to clear up this problem. As the data indicate increasing variance with x , a
weighted linear model using weights ∝ x−1 or x−2 may improve matters. Extrapolating the
black data smooth in Figure 1 to the left, it would appear to cross the horizontal axis at about
x = 1. So, setting weights equal to (x − 1)−2 seems a sensible place to start.

Figure 2 shows a Bayes marginal model plot for the variance with h = x for the weighted
model

y | x = E(y | x) + e/
√

w,

where E(y|x) = θ0 + θ1x , the errors e are normally distributed with mean 0 and variance σ 2,
and the weights w are (x − 1)−2. Now, the black data-based smooth follows the pattern of the
gray model-based smooths much more closely, and this weighted model appears to improve
on the unweighted model. Using appropriate weights is important here so that the level of
uncertainty (whether quantified using frequentist or Bayesian methods) changes according to
the variability in the data. The mean function estimate changes little whether weights are used
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Figure 1. Bayes marginal model plot for the variance with h = x for the simple linear regression model
fitted to the naphthalene data.

or not (the Bayes marginal model plot for the mean for h = x looks similar under weighted and
unweighted models), but prediction intervals, for example, may vary considerably depending
on whether or not weights are used.

Compare Figures 1 and 2 with the standard residual plots in Figure 3. The heterogeneity
problem is less obvious in the residual plot for the unweighted model (on the left of the figure)
than it was in Figure 1, and there is certainly no clear indication that using weights equal to
(x − 1)−2 might improve the model. In fact, using such weights results in a residual plot (on
the right of the figure) that is virtually indistinguishable from the original plot. The Bayes
marginal model plots on the other hand clearly demonstrate a heterogeneity problem with the
unweighted model that can be corrected with a suitable choice of weights.

4. Wine demand application

Durham et al. (2004) presented the results of a Bayesian analysis of wine demand
at a restaurant, using hedonic quantity models to evaluate the impact of objective factors
(e.g., origin, varietal), sensory descriptors, and price, on the choice of 47 red and 29 white
wines. The data were collected at a high-end restaurant over nineteen weeks in 1998. The
restaurant offers a wide selection of wines detailed in an extensive menu that describes brand,
vintage, origin, price, and sensory qualities. Sensory information includes aroma, flavours, and
‘mouth feel’ (e.g. dry, tannic, smooth, big, creamy, heavy), with typical descriptors for aroma
and taste including fruits (berry, lemon), flowers (apple, rose), and other food associations
(herbal, honey, chocolate). Wine prices are generally based on expert quality assessments,
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Figure 2. Bayes marginal model plot for the variance with h = x for the weighted simple linear
regression model fitted to the naphthalene data.
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Figure 3. Residual plots for the unweighted model (left) and weighted model (right) fitted to the
naphthalene data.

with adjustment for varietal, origin, and market factors, and only rarely can the price of a
wine be said to reflect consumer valuation of its quality. Many wines can appear to be greatly
over—or under-priced due to the great variety of wines available, supply variation, and a lack
of good information on quality. This study was conducted to explore whether wine demand,
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Figure 4. Bayes marginal model plot for the variance with h = log(fitted means) for the Poisson model
fitted to all the wine data.

measured by quantity sold in each of the 19 weeks, was possibly driven by the objective and
sensory descriptors on wine menus rather than simply price.

Count data such as these can be modelled using Poisson regression, with the (log) Poisson
means dependent on the wine characteristics. However, these data exhibit over-dispersion,
with more zero-counts than expected by a Poisson model. To address this, the study authors
tried a number of alternative models; this paper presents Bayes marginal model plots for
only the Poisson and zero-inflated Poisson (Lambert, 1992) models. Zero-inflated Poisson
regression allows for over-dispersion by modelling the counts using a mixture distribution:
Poisson with probability pi or identically zero (i.e. a structural zero) with probability 1 − pi .
The Poisson means and structural zero probabilities are modelled as functions of the wine
characteristics. The study authors modified this set-up to account for wines available by the
glass that almost always have positive sales. These wines were modelled as Poisson(µi ) and
other (non-glass) wines followed the zero-inflated model.

WinBUGS software (Spiegelhalter et al., 2003) was used to generate posterior samples
for the model parameters (using non-informative, zero-mean, Normal priors with standard
deviations of ten, based on an assumption that it was implausible that model parameters would
be more than about plus/minus 20). The residual deviance for the Poisson model was 1369
on 1381 degrees of freedom, ordinarily suggestive of a reasonable fit. Furthermore, Bayes
marginal model plots for the mean show little difference in fit between the models considered.
However, Bayes marginal model plots for the variance indicate a problem with the Poisson
model. In particular, as the Poisson model restricts the variance to be the same as the mean,
it fails to track the higher count variation at larger values of h = log(fitted means), as can be
seen in Figure 4.
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Figure 5. Bayes marginal model plot for the variance with h = log(fitted means) for the zero-inflated
Poisson model fitted to white wines only.

The zero-inflated model fitted to all the data does track the variance more closely at
larger values of h = log(fitted means), but the corresponding plot continues to indicate model
discrepancies (plot not shown). However, the zero-inflated model does appear to fit the data
satisfactorily for just the white wines. The Bayes marginal model plot methodology actually
prompted this discovery as, to provide confidence in a particular model, there should be
broadly matching smooths not only for a variety of h-functions but also for any subset of the
data. Figure 5 shows a plot for the zero-inflated model fitted to the white wines only.

This plot shows a clear improvement on Figure 4, and provides support for this model
(for white wines). A similar plot for red wines (not shown) is less convincing, although it too
shows an improvement over the Poisson model. The study authors found that another model
they considered (zero-inflated negative binomial) provided a more satisfactory fit for the red
wines. Nevertheless, the improvement over the zero-inflated Poisson model was marginal and
substantive results were essentially unchanged, so that the final results reported in Durham
et al. (2004) use the zero-inflated Poisson model for all wines, red and white.

5. Discussion

Bayes marginal model plots for the variance offer an intuitive way to check regression
variance functions graphically. After obtaining posterior samples for model parameters, a
series of smoothing operations provides model-free and model-based variance estimates that
can be compared in simple two-dimensional scatterplots. Cycling through plots in various
directions h provides guidance on the fit of the model variance function. In an area where
there appear to be no other competing graphical methods, this methodology is proposed as a
viable aid to model assessment (as opposed to model selection). Publicly available software
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at http://lcb1.uoregon.edu/ipardoe/research/bmmpsoft/bmmpsoft.htm is avail-
able to construct these plots for standard models such as normal linear regression models.
The software code can be adapted relatively easily for non-standard models such as the ones
used for the wine example. The methods make use of common non-parametric methods for
continuous data, such as cubic smoothing splines and loess smoothers. Experience suggests
that use of more sophisticated smoothers usually changes the visual impression of a plot very
little. Strictly speaking, local linear smoothers might be preferred, since it is not clear that
other methods have the bias cancellation property mentioned in Section 2.

Whichever smoothing method is used, some care must be exercised in the selection
of the smoothing parameter. Over-smoothing can result in smooths that miss clear patterns,
while under-smoothing can produce highly variable smooths that track spurious patterns.
Broadly speaking, experience using this methodology and previous simulation studies sug-
gest that when the smoothing parameter provides a reasonable compromise between over-
and under-smoothing, poorly-fitting and well-fitting models can be correctly identified most
of the time. Although standard methods for smoothing parameter selection (for example,
Hurvich, Simonoff & Tsai, 1998) sometimes work well, in general there appear to be no
reliable short-cut methods for pre-selecting the smoothing parameter ahead of time, or rec-
ommended values that will work in most situations. Rather, the analyst should look at scat-
terplots of the data versus h and of the model fitted values versus h, and choose a smoothing
parameter that produces reasonable smooths in both plots simultaneously. If in doubt, err on
the side of over- rather than under-smoothing, since under-smoothing sometimes produces
plots indicating model inadequacy in cases when a model is good, but over-smoothing rarely
leads to plots indicating model adequacy for poor models. Furthermore, the amount of over-
or under-smoothing has to be quite extreme to produce poor results. Although the suggested
method for choosing the smoothing parameter relies on human perception of patterns in a
scatterplot, experience indicates that, in the case of smoothing splines, variation of two or
three effective degrees of freedom between different analysts is not unreasonable, but makes
little (qualitative) difference to the plots. Varying the smoothing parameter any more than this
can have adverse effects, but is unlikely to be a problem in practice since it would probably
correspond to a very poor representation of the patterns in the scatterplot.

This paper suggests that the variance function check should be performed graphically on
the standard deviation scale. However, smoothing squared residuals and then taking the square
root is not quite the same as smoothing the corresponding absolute residuals, as by Jensen’s
inequality, E(|residual|) = E ((residual2)1/2) ≤ (E (residual2))1/2. Ideally, as it is standard
deviation function estimates rather than variance function estimates that are being displayed
in the suggested plots, all smoothing should be done on the standard deviation scale. For
the model-free estimate, this would involve smoothing the absolute values of the model-free
residuals. As noted above, this is not the same as smoothing the squared model-free residuals
and then taking the square root, although they will probably be close. It is not clear, however,
what the corresponding model-based estimate should be on the standard deviation scale—
there is no relationship equivalent to (2) on this scale. Thus, the methodology described above
of smoothing variances and taking square roots is the only possibility if the variance function
check is to be done on the standard deviation scale. It is possible to instead use the variance
scale, thus avoiding the square root difficulties, but this advantage has to be weighed against
the disadvantage of working on an unintuitive scale.
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Bayes marginal model plots can be summarized numerically using a discrepancy mea-
sure. First calculate the average squared distance from the model-free smooth to the model-
based smooths (a). Then calculate the average squared distances from each model-based
smooth to all the other model-based smooths (bm , m = 1, . . . , 100). The discrepancy measure
is the proportion of bms larger than a; if near one then the model-free smooth passes close to
the center of the model-based smooths, while if near zero then the model-free smooth differs
greatly from the model-based smooths (e.g., the discrepancy measure for Figure 4 is 0.0,
while that for Figure 5 is 0.51). See Hart (1997) for similar ideas in this vein.

As suggested by a referee, it would be interesting to see whether or not these graphical
methods work as well with prediction sum of squares (PRESS) residuals, which are sometimes
used in model comparison. See, for example, Tarpey (2000) for a recent paper on these in a
constrained setting.
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