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Applied Regression Modeling:

A Business Approach

Chapter 5: Regression Model Building II

Sections 5.1–5.2

by Iain Pardoe
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• Beware model conclusions that are overly
influenced by a small handful of data points, e.g.:

◦ overall results can be biased if a few unusual
points differ dramatically from general patterns
in the majority of the data values;

◦ misleading to conclude evidence of a strong
association between variables if evidence based
mainly on a few dominant points.
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• Beware model conclusions that are overly
influenced by a small handful of data points, e.g.:

◦ overall results can be biased if a few unusual
points differ dramatically from general patterns
in the majority of the data values;

◦ misleading to conclude evidence of a strong
association between variables if evidence based
mainly on a few dominant points.

• Focus on two measures of individual data point
influence:

◦ outliers have unusual Y-values relative to their
predicted Ŷ-values from a model;

◦ high leverage points have unusual combinations
of X-values relative to general dataset patterns.
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• Beware model conclusions that are overly
influenced by a small handful of data points, e.g.:

◦ overall results can be biased if a few unusual
points differ dramatically from general patterns
in the majority of the data values;

◦ misleading to conclude evidence of a strong
association between variables if evidence based
mainly on a few dominant points.

• Focus on two measures of individual data point
influence:

◦ outliers have unusual Y-values relative to their
predicted Ŷ-values from a model;

◦ high leverage points have unusual combinations
of X-values relative to general dataset patterns.

• Cook’s distance is a composite measure of
outlyingness and leverage.
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• Outliers have unusual Y-values relative to their
predicted Ŷ-values from a model.

• In other words, observations with a large magnitude
residual, êi = Yi − Ŷi.

• Computer can calculate studentized residuals to
put them on a common scale.

• When four regression assumptions (zero mean,
constant variance, normality, and independence) are
satisfied, studentized residuals ≈ N(0, 12).

• If we identify an observation with a studentized
residual outside (−3, 3), we’ve either witnessed a
very unusual event (one with prob. less than 0.002)
or we’ve found an observation with a Y-value that
doesn’t fit the pattern in the rest of the dataset.

• Formally define a potential outlier as an
observation with studentized residual < −3 or > 3.
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• If we find one or more outliers, investigate why:
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• If we find one or more outliers, investigate why:

◦ data input mistake (remedy: identify and
correct mistake(s) and reanalyze data);
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• If we find one or more outliers, investigate why:

◦ data input mistake (remedy: identify and
correct mistake(s) and reanalyze data);

◦ important predictor omitted from model
(remedy: identify potentially useful predictors
not included in the model and reanalyze data);
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• If we find one or more outliers, investigate why:

◦ data input mistake (remedy: identify and
correct mistake(s) and reanalyze data);

◦ important predictor omitted from model
(remedy: identify potentially useful predictors
not included in the model and reanalyze data);

◦ regression assumptions violated (remedy:
reformulate model using transformations or
interactions, say, to correct problem);
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• If we find one or more outliers, investigate why:

◦ data input mistake (remedy: identify and
correct mistake(s) and reanalyze data);

◦ important predictor omitted from model
(remedy: identify potentially useful predictors
not included in the model and reanalyze data);

◦ regression assumptions violated (remedy:
reformulate model using transformations or
interactions, say, to correct problem);

◦ potential outliers differ substantively from other
sample observations (remedy: remove outliers
and reanalyze remainder of dataset separately).
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• If we find one or more outliers, investigate why:

◦ data input mistake (remedy: identify and
correct mistake(s) and reanalyze data);

◦ important predictor omitted from model
(remedy: identify potentially useful predictors
not included in the model and reanalyze data);

◦ regression assumptions violated (remedy:
reformulate model using transformations or
interactions, say, to correct problem);

◦ potential outliers differ substantively from other
sample observations (remedy: remove outliers
and reanalyze remainder of dataset separately).

• To gauge outlier influence exclude largest
magnitude studentized residual, refit model to
remaining observations, and see if regression
parameter estimates change substantially.
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• Y = city miles per gallon (MPG) for 50 new
U.S. passenger cars in 2004.

• X1 =weight (thousands of pounds).
• X3 = engine size (liters).
• X5 =wheelbase (hundreds of inches).
• Model:

E(Y ) = b0 + b1(1/X1) + b2(1/X3) + b3(1/X5).

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
1 (Intercept) 9.397 13.184 0.713 0.480

recipX1 44.296 13.173 3.363 0.002
recipX3 19.404 6.706 2.894 0.006
recipX5 −9.303 17.087 −0.544 0.589

a Response variable: Y.
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There is one outlier with studentized residual ≈ 6.
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Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 25.946 7.612 3.409 0.001

recipX1 64.071 7.682 8.340 0.000
recipX3 17.825 3.782 4.713 0.000
recipX5 −33.106 9.919 −3.338 0.002

a Response variable: Y.

• Regression parameter estimates and p-values
change dramatically.

• The outlier was diesel-powered and did not fit the
pattern of the gasoline-powered cars.
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No further outliers.
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• High leverage points have unusual combinations of
X-values relative to general dataset patterns.

• If a point is far from the majority of the sample, it
can pull the fitted model close toward its Y-value,
potentially biasing the results.

• Leverage measures potential for an observation to
have undue influence on a model (0–1: low–high).
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• High leverage points have unusual combinations of
X-values relative to general dataset patterns.

• If a point is far from the majority of the sample, it
can pull the fitted model close toward its Y-value,
potentially biasing the results.

• Leverage measures potential for an observation to
have undue influence on a model (0–1: low–high).

• Rule of thumb:

◦ if leverage > 3(k + 1)/n investigate further;
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• High leverage points have unusual combinations of
X-values relative to general dataset patterns.

• If a point is far from the majority of the sample, it
can pull the fitted model close toward its Y-value,
potentially biasing the results.

• Leverage measures potential for an observation to
have undue influence on a model (0–1: low–high).

• Rule of thumb:

◦ if leverage > 3(k + 1)/n investigate further;
◦ if leverage > 2(k + 1)/n and isolated

investigate further;
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• High leverage points have unusual combinations of
X-values relative to general dataset patterns.

• If a point is far from the majority of the sample, it
can pull the fitted model close toward its Y-value,
potentially biasing the results.

• Leverage measures potential for an observation to
have undue influence on a model (0–1: low–high).

• Rule of thumb:

◦ if leverage > 3(k + 1)/n investigate further;
◦ if leverage > 2(k + 1)/n and isolated

investigate further;
◦ otherwise, no evidence of undue influence.
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• High leverage points have unusual combinations of
X-values relative to general dataset patterns.

• If a point is far from the majority of the sample, it
can pull the fitted model close toward its Y-value,
potentially biasing the results.

• Leverage measures potential for an observation to
have undue influence on a model (0–1: low–high).

• Rule of thumb:

◦ if leverage > 3(k + 1)/n investigate further;
◦ if leverage > 2(k + 1)/n and isolated

investigate further;
◦ otherwise, no evidence of undue influence.

• To gauge influence exclude largest leverage point,
refit model to remaining observations, and see if
reg. parameter estimates change substantially.
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Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 25.946 7.612 3.409 0.001

recipX1 64.071 7.682 8.340 0.000
recipX3 17.825 3.782 4.713 0.000
recipX5 −33.106 9.919 −3.338 0.002

a Response variable: Y.

• Threshold: 3(k + 1)/n = 3(3 + 1)/49 = 0.24.
• Threshold: 2(k + 1)/n = 2(3 + 1)/49 = 0.16.
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Highest leverage point exceeds 3(k + 1)/n threshold.
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Results with high leverage point removed
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Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
3 (Intercept) 24.811 7.717 3.215 0.002

recipX1 68.054 8.785 7.747 0.000
recipX3 15.743 4.389 3.587 0.001
recipX5 −32.400 9.960 −3.253 0.002

a Response variable: Y.

• Regression parameter estimates and p-values don’t
change dramatically.

• The high leverage point had the potential to
strongly influence results, but in this case did not
do so.
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• Cook’s distance is a composite measure of
outlyingness and leverage.

• Rule of thumb:

◦ observations with a Cook’s distance > 1 are
often sufficiently influential that they should be
removed from the main analysis—investigate
further;
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• Cook’s distance is a composite measure of
outlyingness and leverage.

• Rule of thumb:

◦ observations with a Cook’s distance > 1 are
often sufficiently influential that they should be
removed from the main analysis—investigate
further;

◦ observations with a Cook’s distance > 0.5 are
sometimes sufficiently influential that they
should be removed from the main
analysis—investigate further;



Cook’s distance

5.1 Influential points

Influential points

Outliers

Dealing with outliers

CARS5 data
Model 1 studentized
residuals

Remove outlier
Model 2 studentized
residuals

Leverage

Results with outlier
removed

Model 2 leverages

Results with high
leverage point
removed

Cook’s distance
Results for all
observations
Model 1 Cook’s
distances
Results with outlier
removed
Model 2 Cook’s
distances

5.2 Regression
pitfalls

c© Iain Pardoe, 2006 13 / 34

• Cook’s distance is a composite measure of
outlyingness and leverage.

• Rule of thumb:

◦ observations with a Cook’s distance > 1 are
often sufficiently influential that they should be
removed from the main analysis—investigate
further;

◦ observations with a Cook’s distance > 0.5 are
sometimes sufficiently influential that they
should be removed from the main
analysis—investigate further;

◦ otherwise, no evidence of undue influence.
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• Cook’s distance is a composite measure of
outlyingness and leverage.

• Rule of thumb:

◦ observations with a Cook’s distance > 1 are
often sufficiently influential that they should be
removed from the main analysis—investigate
further;

◦ observations with a Cook’s distance > 0.5 are
sometimes sufficiently influential that they
should be removed from the main
analysis—investigate further;

◦ otherwise, no evidence of undue influence.

• To gauge influence exclude largest Cook’s distance,
refit model to remaining observations, and see if
reg. parameter estimates change substantially.
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Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
1 (Intercept) 9.397 13.184 0.713 0.480

recipX1 44.296 13.173 3.363 0.002
recipX3 19.404 6.706 2.894 0.006
recipX5 −9.303 17.087 −0.544 0.589

a Response variable: Y.
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Highest Cook’s distance exceeds 1 threshold.
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Results with outlier removed
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Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 25.946 7.612 3.409 0.001

recipX1 64.071 7.682 8.340 0.000
recipX3 17.825 3.782 4.713 0.000
recipX5 −33.106 9.919 −3.338 0.002

a Response variable: Y.

• The car with the highest Cook’s distance was the
outlier we found before.
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Highest Cook’s distance less than 0.5 threshold.
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Regression pitfalls
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• Some of the pitfalls that can cause problems with a
regression analysis:

◦ autocorrelation (serial correlation)—failing to
account for time trends in the model;

◦ multicollinearity—highly correlated predictors
causing unstable model results;

◦ excluding important predictor variables—leading
to possibly incorrect conclusions;

◦ overfitting (the sample data)—leading to poor
generalizability to the population;

◦ extrapolation—using model results for predictor
values very different to those in the sample;

◦ missing data—leading to reduced sample sizes
at best, misleading results at worst.
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• Autocorrelation occurs when regression model
residuals violate the independence assumption
because they are highly dependent across time.

• Can occur when regression data have been
collected over time and model fails to account for
any strong time trends.

• Dealing with this issue rigorously can require
specialized time series and forecasting methods.

• Sometimes, however, simple ideas can mitigate
autocorrelation problems.

• Example: OIL data file contains annual world crude
oil production in millions of barrels (Y ) from 1880
to 1972 (X).

• Model 1: E(log
e
(Y )) = b0 + b1X.
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Plot shows clear evidence of autocorrelation.
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Model 2: E(log
e
(Yt)) = b0 + b1Xt + b2 log

e
(Yt−1).

Independent errors assumption more reasonable now.
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• Multicollinearity occurs when excessive correlation
between quantitative predictors leads to unstable
models and inflated standard errors.

• Identify by looking at a scatterplot matrix,
calculating bivariate correlations, and calculating
variance inflation factors (problem if > 10).

• Potential remedies include:



Multicollinearity

5.1 Influential points

5.2 Regression
pitfalls

Regression pitfalls

Autocorrelation

Model 1 residuals

Model 2 residuals

Multicollinearity

Model 1 results
X1 and X2 highly
correlated

Model 2 results
Excluding important
predictor variables

Model 1 results

Model 2 results

Paradox explained

Overfitting

Extrapolation

Extrapolation
example

Missing data

Model results

c© Iain Pardoe, 2006 22 / 34

• Multicollinearity occurs when excessive correlation
between quantitative predictors leads to unstable
models and inflated standard errors.

• Identify by looking at a scatterplot matrix,
calculating bivariate correlations, and calculating
variance inflation factors (problem if > 10).

• Potential remedies include:

◦ collect more uncorrelated data (if possible);
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• Multicollinearity occurs when excessive correlation
between quantitative predictors leads to unstable
models and inflated standard errors.

• Identify by looking at a scatterplot matrix,
calculating bivariate correlations, and calculating
variance inflation factors (problem if > 10).

• Potential remedies include:

◦ collect more uncorrelated data (if possible);
◦ create new combined predictor variables from

the highly correlated predictors (if possible);
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• Multicollinearity occurs when excessive correlation
between quantitative predictors leads to unstable
models and inflated standard errors.

• Identify by looking at a scatterplot matrix,
calculating bivariate correlations, and calculating
variance inflation factors (problem if > 10).

• Potential remedies include:

◦ collect more uncorrelated data (if possible);
◦ create new combined predictor variables from

the highly correlated predictors (if possible);
◦ remove one of the highly correlated predictors

from the model.
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• Multicollinearity occurs when excessive correlation
between quantitative predictors leads to unstable
models and inflated standard errors.

• Identify by looking at a scatterplot matrix,
calculating bivariate correlations, and calculating
variance inflation factors (problem if > 10).

• Potential remedies include:

◦ collect more uncorrelated data (if possible);
◦ create new combined predictor variables from

the highly correlated predictors (if possible);
◦ remove one of the highly correlated predictors

from the model.

• Example: SALES3 data file with sales (Y ),
TV/newspaper advertising (X1), and internet
advertising (X2).
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• Model 1: E(Y ) = b0 + b1X1 + b2X2.

Model Summary

Adjusted Regression
Model Multiple R R Squared R Squared Std. Error
1 0.987 a 0.974 0.968 0.8916
a Predictors: (Intercept), X1, X2.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|) VIF
1 (Intercept) 1.992 0.902 2.210 0.054

X1 0.767 0.868 0.884 0.400 49.541
X2 1.275 0.737 1.730 0.118 49.541

a Response variable: Y.

• R2 is 0.974, but neither X1 nor X2 are significant
(given the presence of the other)!

• VIF > 10 suggests there is a multicollinearity
problem.
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Unstable estimates when both X1 and X2 in model.
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• Model 2: E(Y ) = b0 + b1(X1 + X2).

Model Summary

Adjusted Regression
Model Multiple R R Squared R Squared Std. Error
2 0.987 a 0.974 0.971 0.8505
a Predictors: (Intercept), X1plusX2.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 1.776 0.562 3.160 0.010

X1plusX2 1.042 0.054 19.240 0.000
a Response variable: Y.

• R2 unchanged, and the combined predictor variable,
X1 + X2, is significant.

• Note this approach is only possible if it makes sense
to create a combined predictor variable.

• More common to drop one of the correlated
predictors from model.
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• Excluding important predictors sometimes results in
models that provide incorrect, biased conclusions
about included predictors.

• Strive to include all potentially important
predictors, and remove a predictor only if there are
compelling reasons to do so (e.g., if causing
multicollinearity problems and has high individual
p-value).

• Example: PARADOX data file with n=27
high-precision computer components with
component quality (Y ) potentially depending on
two controllable machine factors, speed (X1) and
angle (X2).
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• Model 1: E(Y ) = b0 + b1X1.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
1 (Intercept) 2.847 1.011 2.817 0.009

X1 0.430 0.188 2.288 0.031
a Response variable: Y.
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• Model 1: E(Y ) = b0 + b1X1.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
1 (Intercept) 2.847 1.011 2.817 0.009

X1 0.430 0.188 2.288 0.031
a Response variable: Y.

• Results suggest a positive association between
quality and speed.

• In other words, increase the speed of the machine
to improve quality.
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• Model 1: E(Y ) = b0 + b1X1.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
1 (Intercept) 2.847 1.011 2.817 0.009

X1 0.430 0.188 2.288 0.031
a Response variable: Y.

• Results suggest a positive association between
quality and speed.

• In other words, increase the speed of the machine
to improve quality.

• However, this ignores process information relating
to angle.
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• Model 2: E(Y ) = b0 + b1X1 + b2X2.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 1.638 0.217 7.551 0.000

X1 −0.962 0.071 −13.539 0.000
X2 2.014 0.086 23.473 0.000

a Response variable: Y.
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• Model 2: E(Y ) = b0 + b1X1 + b2X2.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 1.638 0.217 7.551 0.000

X1 −0.962 0.071 −13.539 0.000
X2 2.014 0.086 23.473 0.000

a Response variable: Y.

• Results suggest a negative association between
quality and speed (for a fixed angle),

• and a positive association between quality and
angle (for a fixed speed).
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• Model 2: E(Y ) = b0 + b1X1 + b2X2.

Parameters a

Model Estimate Std. Error t-stat Pr(> |t|)
2 (Intercept) 1.638 0.217 7.551 0.000

X1 −0.962 0.071 −13.539 0.000
X2 2.014 0.086 23.473 0.000

a Response variable: Y.

• Results suggest a negative association between
quality and speed (for a fixed angle),

• and a positive association between quality and
angle (for a fixed speed).

• In other words, increase the angle but decrease the
speed of the machine to improve quality.
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Positive association between Y and X1 ignoring X2.
Negative association between Y and X1 accounting for
X2.
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• Overfitting can occur if overly complicated model
tries to account for every possible pattern in sample
data, but generalizes poorly to underlying
population.

• Should always apply a “sanity check” to make sure
model makes sense from subject-matter perspective
and conclusions are supported by data.
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• Overfitting can occur if overly complicated model
tries to account for every possible pattern in sample
data, but generalizes poorly to underlying
population.

• Should always apply a “sanity check” to make sure
model makes sense from subject-matter perspective
and conclusions are supported by data.
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• Which model seems more reasonable?
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• Extrapolation occurs when regression model results
are used to estimate or predict a response value for
an observation with predictor values that are very
different from those in the sample.

• This can be dangerous because it means making a
decision about a situation where there are no data
values to support our conclusions.

• Example: if we observe an upward trend between
two variables, should we assume the trend
continues indefinitely at higher values?
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Straight-line model overshoots actual Y at far right.
Quadratic model undershoots (i.e., neither model
enables accurate prediction far from sample data).
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• Missing data occurs when particular values in the
dataset have not been recorded for particular
variables and observations.

• Dealing with issue rigorously is beyond scope of
book, but there are some simple ideas that can
mitigate some of the major problems.

• Example: MISSING data file with n=30, Y, and
X1–X4.

• No missing values for Y, X1, or X4, but five missing
values for X2, one of which is also missing X3:
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• Missing data occurs when particular values in the
dataset have not been recorded for particular
variables and observations.

• Dealing with issue rigorously is beyond scope of
book, but there are some simple ideas that can
mitigate some of the major problems.

• Example: MISSING data file with n=30, Y, and
X1–X4.

• No missing values for Y, X1, or X4, but five missing
values for X2, one of which is also missing X3:

◦ any model including X2 will exclude five
observations;
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• Missing data occurs when particular values in the
dataset have not been recorded for particular
variables and observations.

• Dealing with issue rigorously is beyond scope of
book, but there are some simple ideas that can
mitigate some of the major problems.

• Example: MISSING data file with n=30, Y, and
X1–X4.

• No missing values for Y, X1, or X4, but five missing
values for X2, one of which is also missing X3:

◦ any model including X2 will exclude five
observations;

◦ including X3 (but excluding X2) will exclude
one observation;



Missing data

5.1 Influential points

5.2 Regression
pitfalls

Regression pitfalls

Autocorrelation

Model 1 residuals

Model 2 residuals

Multicollinearity

Model 1 results
X1 and X2 highly
correlated

Model 2 results
Excluding important
predictor variables

Model 1 results

Model 2 results

Paradox explained

Overfitting

Extrapolation

Extrapolation
example

Missing data

Model results

c© Iain Pardoe, 2006 33 / 34

• Missing data occurs when particular values in the
dataset have not been recorded for particular
variables and observations.

• Dealing with issue rigorously is beyond scope of
book, but there are some simple ideas that can
mitigate some of the major problems.

• Example: MISSING data file with n=30, Y, and
X1–X4.

• No missing values for Y, X1, or X4, but five missing
values for X2, one of which is also missing X3:

◦ any model including X2 will exclude five
observations;

◦ including X3 (but excluding X2) will exclude
one observation;

◦ excluding X2 and X3 will exclude no
observations.
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Predictors Sample size R2 s
X1, X2, X3, X4 25 0.959 0.865
X2, X3, X4 25 0.958 0.849
X1, X3, X4 29 0.953 0.852
X1, X4 30 0.640 2.300

• Ordinarily, we would probably favor the
(X2, X3, X4) model.

• However, the (X1, X3, X4) model applies to much
more of the sample.

• Thus, in this case, we would probably favor the
(X1, X3, X4) model, since R2 and s are roughly
equivalent, but the usable sample size is much
larger.
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